

Laboratoire de Chimie et Physique Quantiques

Contribution of the DFTB Scheme to the Description of Molecules and Clusters at the Water/Solvant interface

Aude Simon & Jérôme Cuny

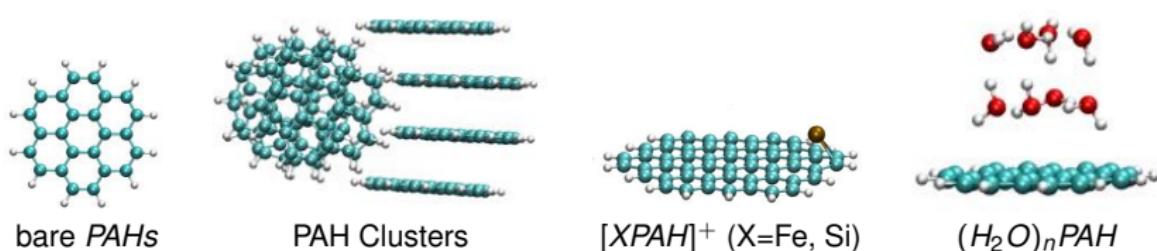
Laboratoire de Chimie et Physique Quantiques (LCPQ)
Université de Toulouse & CNRS
UT3-Paul Sabatier

PIRE Annual Review Meeting
18th - 20th June 2018, CCNY, New York

1 Introduction

2 Theoretical approaches

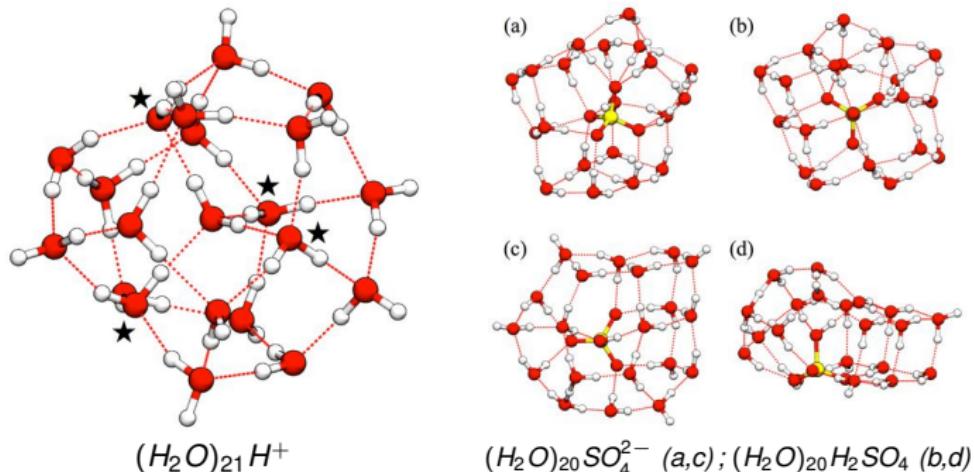
3 Towards bulk systems


1 Introduction

2 Theoretical approaches

3 Towards bulk systems

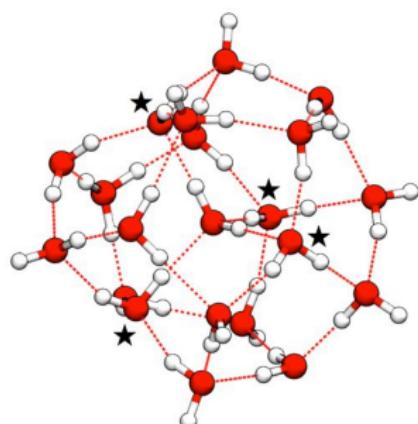
Systems of interest : molecular clusters and complexes of atmospherical and astrophysical interest


- PAH-derived species (PAH : Polycyclic Aromatic Hydrocarbon)
- The PAH population would represent 10-20 % of the interstellar carbon
- No specific PAH molecule has been identified

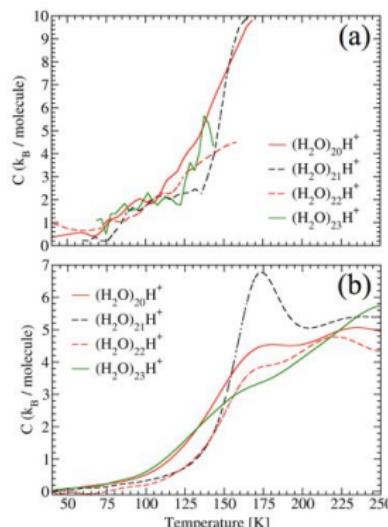
- Collaborations with experimentalists and astrophysicists (Groups of C. Joblin (IRAP/LCAR, ERC Nanocosmos) and P. Moretto-Capelle (LCAR, Toulouse, France))
- Structures, energetics, spectral features

Systems of interest : molecular clusters and complexes of atmospherical and astrophysical interest

- Water clusters (isolated and with impurities)


from Korchagina et al. JPCA 2016

from Korchagina et al. PCCP 2017


- Collaborations with experimentalists (Group of J.-M. L'Hermite (LCAR, Toulouse, France))
- Structures, energetics, thermodynamic properties (heat capacities)

Systems of interest : molecular clusters and complexes of atmospherical and astrophysical interest

- Water clusters (isolated and with impurities)

$(H_2O)_{21}H^+$

$Cv(T)$ from Korchagina et al. PCCP 2017

- Collaborations with experimentalists (Group of J.-M. L'Hermite (LCAR, Toulouse, France))
- Structures, energetics, thermodynamic properties (heat capacities from MD with Replica Exchanges)

1 Introduction**2** Theoretical approaches**3** Towards bulk systems

Approach : BOMD/SCC-DFTB

- Extensive "On-the-fly" Born Oppenheimer molecular dynamics simulations (BOMD, nuclei : classical, electrons : quantal) of $\sim 100 \text{ ps-1 ns}$
- Electronic structure described with the Self-Consistent-Charge Density Functional based Tight Binding (DFTB) method (*Eilstner PRB 2008*) with the deMonNano code (<http://demon-nano.ups-tlse.fr/>)
- SCC-DFTB : An approximate DFT-based approach significantly faster than DFT : parameterized functions and integrals, and reduced basis sets.

Approach : BOMD/SCC-DFTB

- Extensive "On-the-fly" Born Oppenheimer molecular dynamics simulations (BOMD, nuclei : classical, electrons : quantal) of $\sim 100 \text{ ps-1 ns}$
- Electronic structure described with the Self-Consistent-Charge Density Functional based Tight Binding (DFTB) method (*Elstner PRB 2008*) with the deMonNano code (<http://demon-nano.ups-tlse.fr/>)
- SCC-DFTB : An approximate DFT-based approach significantly faster than DFT : parameterized functions and integrals, and reduced basis sets.

(1) Development of the Kohn-Sham energy up to the 2nd order around ρ_0 :

$$E^{SCC-DFTB} = \sum_i^{occ} n_i \langle \psi_i | \hat{h}[\rho_0] | \psi_i \rangle + E^{rep}(\rho_0) + \frac{1}{2} \sum_{\alpha\beta} \gamma_{\alpha\beta}(R_{\alpha\beta}) \delta q_{\alpha} \delta q_{\beta}$$

* q : Mulliken charges in the initial SCC-DFTB scheme

* $E^{rep}(\rho_0)$, $\gamma_{\alpha\beta}(R_{\alpha\beta})$, $\langle \phi_{\mu} | \phi_{\nu} \rangle$ and $\langle \phi_{\mu} | \hat{h}[\rho_0] | \phi_{\nu} \rangle$ (Slater-Koster integrals) : analytically parametrized functions.

(2) Molecular orbitals : minimal (valence) linear combinations of atomic orbitals ϕ_{μ} :

$$\psi_i = \sum_{\mu} c_{i\mu} \phi_{\mu}$$

(3) All three-center contributions are neglected in the Kohn-Sham matrix.

Modifications of the SCC-DFTB hamiltonian to describe molecular clusters (*Rapacioli et al. Phys. Stat. Solid. B 2012*)

- Dispersion Interactions $((PAH)_2$, *Rapacioli et al. JCP 2009)*

$$V_{disp} = - \sum_{i \neq j} f_{damp.}(R_{ij}) \frac{C_6^{ij}}{R_{ij}^6}$$

- Alternative to Mulliken charges : charges CM3 (charges Model 3 *Li et al. JPCA 1998, Winget et al. JPCA 2002*)

$$q_k^{CM3} = q_k^{Mull} + \sum_{\substack{atoms \\ k' \neq k}} D_{Z_k Z_{k'}} B_{kk'} \quad (B_{kk'} \text{ Mayer's bond order})$$

Improvement of :

- Dipole moments (*Simon et al. PCCP 2012*) → IR spectra (*Joalland et al. JPCA 2010*)
- Long range electrostatic interactions : PAH clusters (*Rapacioli et al. JCP 2009*), water clusters (*Simon et al. PCCP 2012, JCP 2013, CTC 2014*)

Modifications of the SCC-DFTB hamiltonian to describe molecular clusters (Rapacioli et al. Phys. Stat. Solid. B 2012)

- Dispersion Interactions $((PAH)_2$, Rapacioli et al. JCP 2009)

$$V_{disp} = - \sum_{i \neq j} f_{damp.}(R_{ij}) \frac{C_6^{ij}}{R_{ij}^6}$$

- Alternative to Mulliken charges : charges CM3 (charges Model 3 Li et al. JPCA 1998, Winget et al. JPCA 2002)

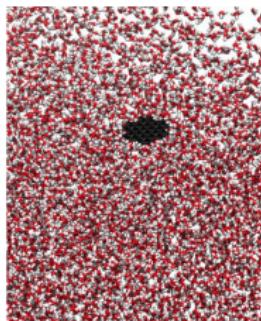
$$q_k^{CM3} = q_k^{Mull} + \sum_{\substack{atomes \\ k' \neq k}} D_{Z_k Z_{k'}} B_{kk'} \quad (B_{kk'} \text{ Mayer's bond order})$$

Improvement of :

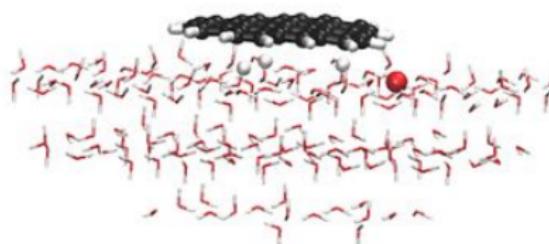
- Dipole moments (Simon et al. PCCP 2012) → IR spectra (Joalland et al. JPCA 2010)
- Long range electrostatic interactions : PAH clusters (Rapacioli et al. JCP 2009), water clusters (Simon et al. PCCP 2012, JCP 2013, CTC 2014)

Example : Bond dissociation energies (kcal/mol)

	$C_6H_6 - H_2O$	$H_2O - H_2O$
DFTB Mull.	1.4	1.7
DFTB CM3	2.6	3.1
Ref. Th. WF	2.17	3.11
Ref. Exp.	2.4-2.9	3.15-3.16


1 Introduction

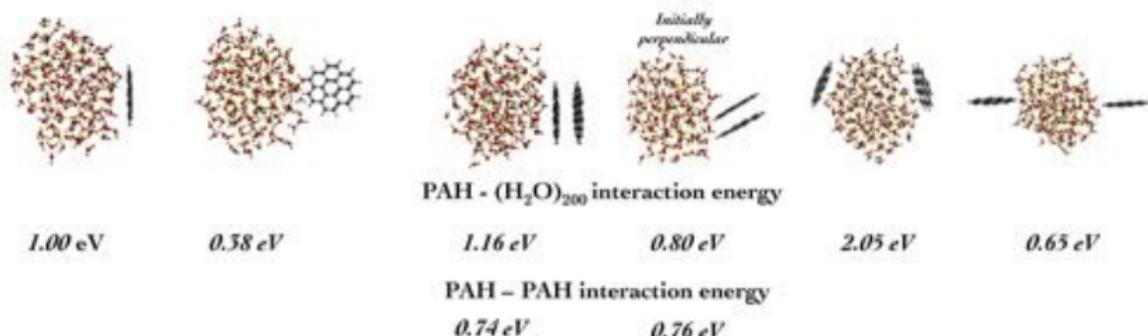
2 Theoretical approaches


3 Towards bulk systems

System of interest : PAHs on water ice (astro. and atmosph.)

- PAHs adsorbed on water ice (*Michoulier et al. PCCP 2018 a and b*)

MD/FF : structures

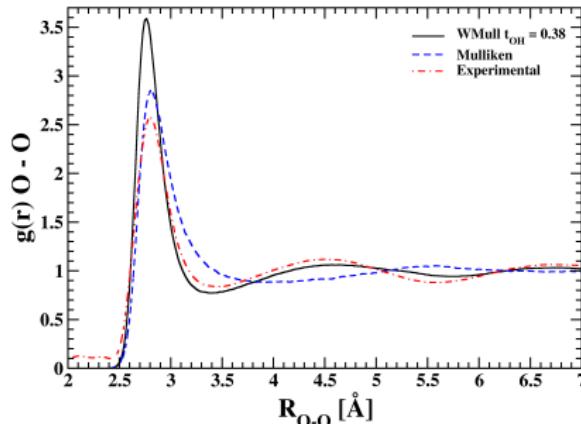

DFTB : ionisation energy of adsorbed PAHs
IR spectra

- Collaborations with C. Toubin (Lille, France) and J. Mascetti (Bordeaux, France)
- Adsorption energies (benchmark on TPD experiments)
- Influence of interface structure on the ionisation energy of PAHs (now charge transfer excited states)

Systems of interest : asphaltene molecules/clusters at the interface with water

- Collab. V. Pauchard, involving S. Darjani (PhD)
- Preliminary results : finite systems

Fig. 1 DFTB optimized geometries and interaction energies between PAH and water clusters

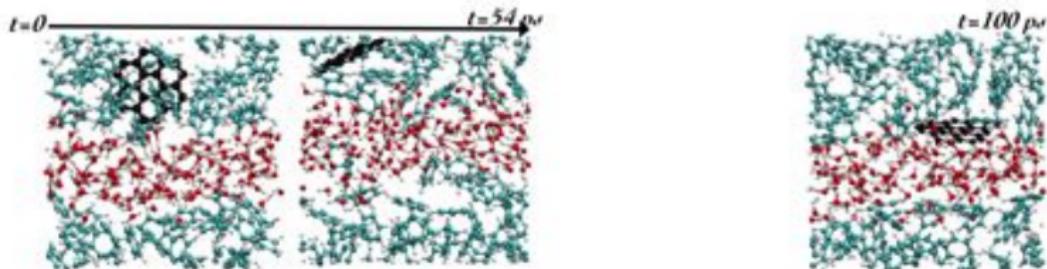


- Most favorable situation (both in terms of total energy and water-PAH energy) : individual coronene molecules parallel to water surface
- Water-PAH interaction energy in line with experimental free energies of adsorption for smaller PAH (Raja et al J. Chem. Engin. Data 2002, 47, 1215-1219)

from Petrophase 2016 poster by Pauchard, Cuny and Simon

Systems of interest : asphaltene molecules/clusters at the interface with water

- Description of liquid water (and aromatic solvent)


from Simon et al., Mol. Sim., submitted

- RDF for O-O for liquid water at 300 K obtained from BOMD/SCC-DFTB simulations, modified Mulliken charges (similar to CM3).
- Details : Periodic conditions, cubic box of 16 \AA^3 , 128 water molecules, chain of Nose-Hoover thermostats, 100 ps of production run
- + Nuclear quantum effects with Path Integral Molecular Dynamics simulations (PIMD, Cuny et al, to be submitted).

Systems of interest : asphaltene molecules/clusters at the interface with water

- Collab. V. Pauchard, involving S. Darjani (PhD)
- Current work : MD/DFTB simulations in periodic conditions

Fig. 2 : time evolution of PAH at a periodic water-benzene interface - initial configuration dependence

Initial : perpendicular -> rotation and desorption

Initial : parallel -> stable configuration

Periodic simulations (water/vacuum & water/benzene) show that parallel configuration is stable whereas perpendicular configuration leads to rotation and desorption (preliminary results)

from Petrophase 2016 poster by Pauchard, Cuny and Simon

Ongoing and Future work

Asphaltene at the water interface

- Refine theoretical description
- Chemical modifications : size, heteroatoms, alkylside chains
- Change of solvent, presence of impurities
- → Influence on structures, energetics and kinetics at the interface
- → Adsorption energies and solvation energies (umbrella sampling)

Gas hydrates

- New topic (collab. LGC, Toulouse, France)
- Test on some systems (so far about 1500 atoms maximum in the cell)
- Same data as for the asphaltene project

Use of transferability and efficiency of MD/SCC-DFTB

Acknowledgments

- Mathias Rapacioli
- CALMIP (computing mesocenter in Toulouse, France)

