

Sedimentation of particles in drilling fluids

PIRE Project annual review
Trust III - Drilling fluids

Fluid at rest:

X-rays

Results

Perspectives

Under shear: PIV

Objectives

Methods

Materials

Calibration: PIV in tube

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

UiO • University of Oslo

June 17th, 2019

Plan

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest: X-rays

Results

Perspectives

Fluid at rest:
X-rays

Results
Perspectives

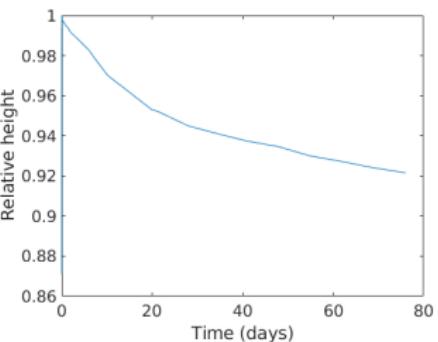
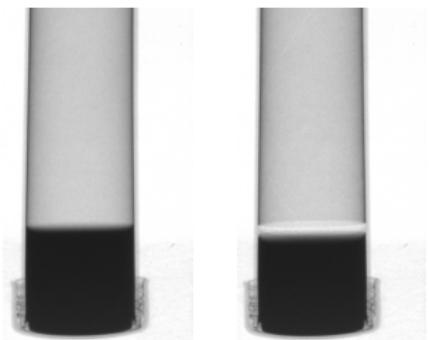
Under shear: PIV

Objectives

Methods

Materials

Calibration: PIV in tube



Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

Fluid at rest: X-rays results

Sedimentation of
particles
in drilling fluids

1 h 28 days

- ▶ From 1 h after the tube is shaken, height of the interface decreases with time.
- ▶ After several days, a layer of liquid appears at the top of the drilling fluid.
- ▶ Compare with Santos et al. *J. Petrol. Sci. Eng.* (2018) : 80% of the initial height after one month.

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

Fluid at rest: Perspectives

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

- ▶ Rheology of the different phases
- ▶ X-rays with model fluids:
 - ▶ Newtonian
 - ▶ Emulsions
 - ▶ Emulsion + nanoparticles

Plan

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest: X-rays

Results

Perspectives

Fluid at rest:
X-rays

Results
Perspectives

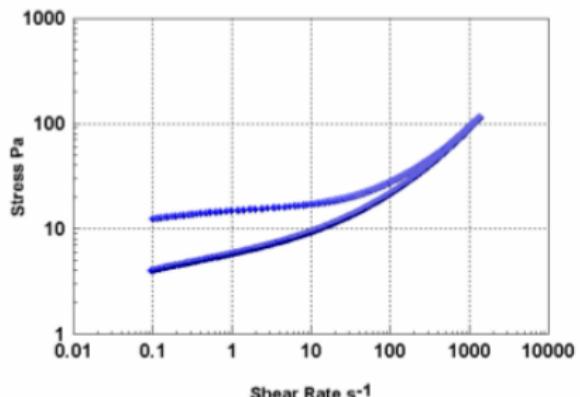
Under shear: PIV

Objectives

Methods

Materials

Calibration: PIV in tube


Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

Sedimentation under shear: objectives

Sedimentation of
particles
in drilling fluids

- ▶ How is sedimentation velocity affected by ...
 - ▶ ... fluid composition
 - ▶ Liquid droplets stabilized with surfactants
 - ▶ Thickeners: clay, polymers
 - ▶ ... rheological properties
 - ▶ Yield stress
 - ▶ Thixotropy

Jachnik (2003) *Ann. T.
Nord. Rheol. Soc.*

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

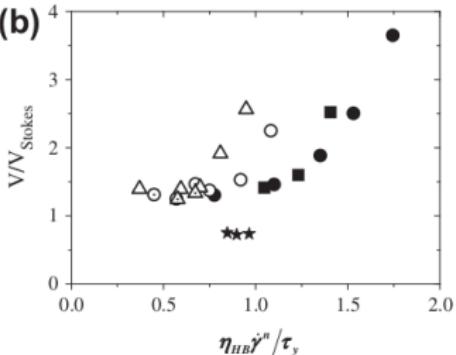
Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

Sedimentation under shear: objectives

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN


Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

- ▶ Ovarlez et al. (2012),
J. non-Newton. Fluid
 - ▶ Yield stress fluids
 - ▶ Wide gap Couette
 - ▶ MRI
- ▶ Some objectives
 - ▶ Higher shear rates
 - ▶ Effect of emulsion droplet size on sedimentation
 - ▶ Transient flow
- ▶ Need to install experimental setup
 - ▶ Rheometer
 - ▶ PIV

Methods: PIV (Particle image velocimetry)

Sedimentation of
particles
in drilling fluids

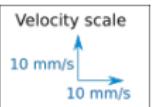
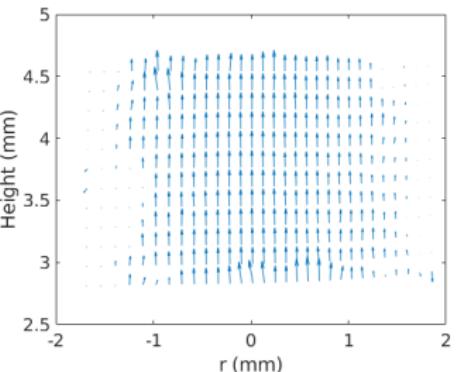
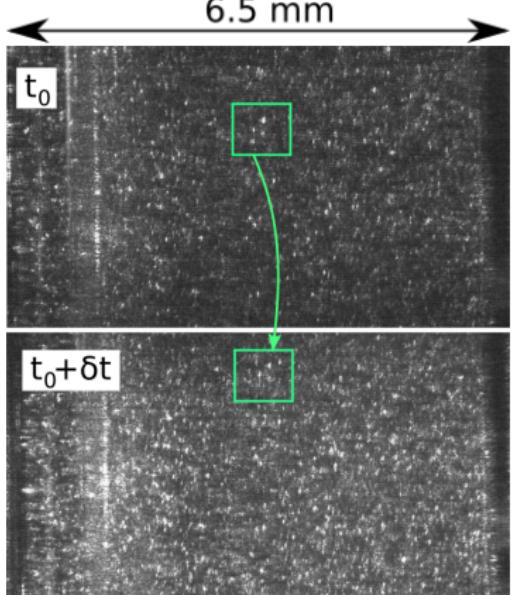
Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube




- ▶ Transparent fluid
- ▶ Particles
 - ▶ Passive \Rightarrow velocity field of the flow
 - ▶ Active \Rightarrow particle sedimentation
- ▶ Lighten a plane or a volume with a laser
- ▶ Cross correlation of two images

Methods: PIV (Particle image velocimetry)

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Example: passive particles in vertical pipe, upward flow

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

PIV setup: Laboratory

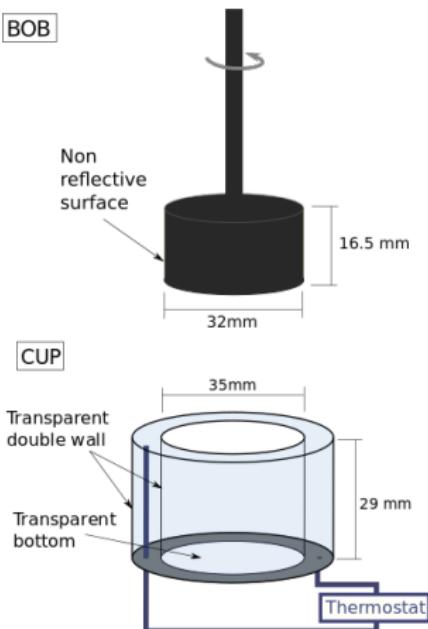
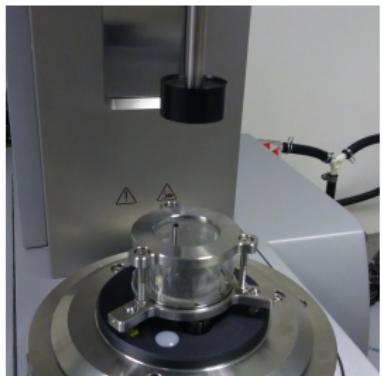
Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV



Objectives
Methods
Materials
Calibration: PIV in tube

PIV setup in rheometer

Sedimentation of
particles
in drilling fluids

Rheometer Anton Paar *MRC 702 TDR* with
PIV cell *C-LTD 70/PIV*

- ▶ Couette cell
- ▶ Transparent walls
- ▶ Temperature regulation
- ▶ Gap 1.5 mm

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV


Objectives
Methods
Materials
Calibration: PIV in tube

PIV setup in rheometer

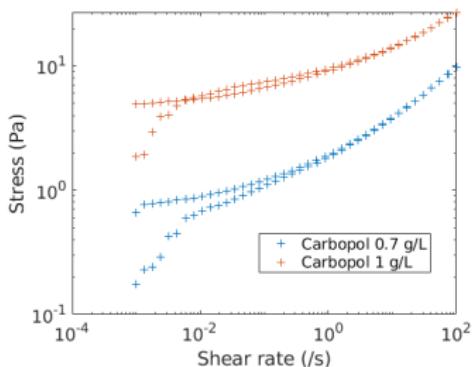
Sedimentation of particles in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

- ▶ Field of view:
1 mm-6.5 mm
- ▶ Camera
resolution:
6.45 μm
- ▶ Time interval:
1 μs ... 60 s
- ▶ Velocity up to 6 m/s,
e. shear rates up to
1000 s^{-1} .

Fluid at rest: X-rays

Results Perspectives


Under shear: PIV

Objectives
Methods
Materials
Calibration:

Model fluids: Carbopol 940

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Concentration (g/L)	Spread test Yield stress
5	> 100 Pa
1.5	96 Pa
1	13 Pa
0.7	6 Pa

Fluid at rest:
X-rays

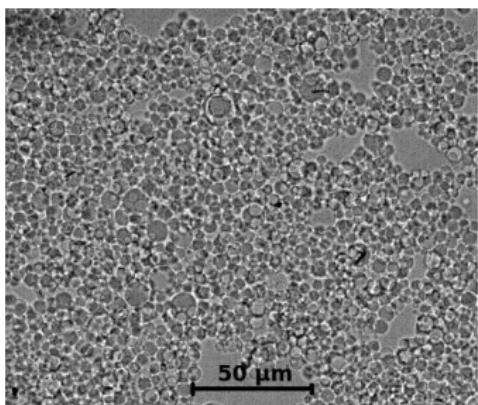
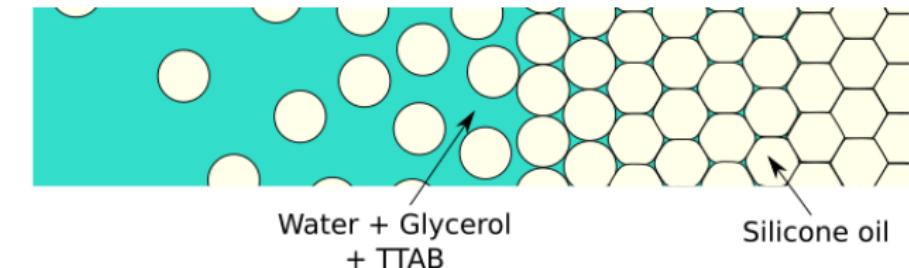
Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

Model fluids: transparent emulsions

Sedimentation of
particles
in drilling fluids

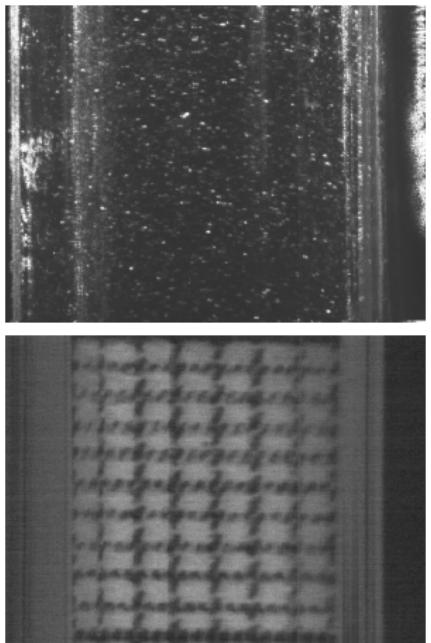


Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube


Yield stress depends on

- ▶ Droplet size
- ▶ Droplet concentration

PIV in a 4mm diameter tube

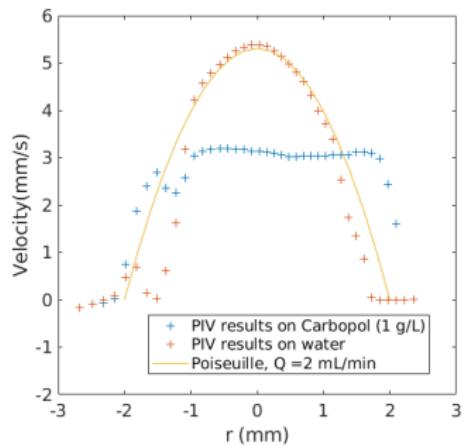
Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

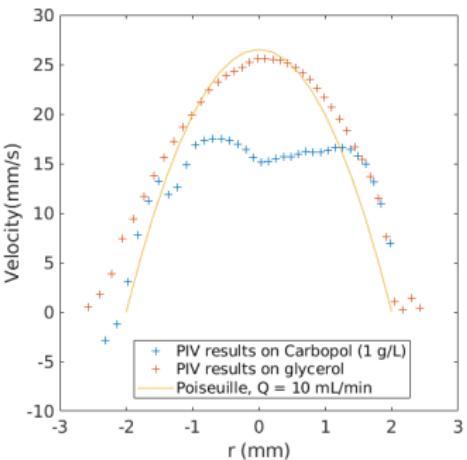
- ▶ With 5 μm seeding particles
- ▶ Average on 50 image pairs
- ▶ Calibration grid to take into account the image deformations due to the camera and the tube

Fluid at rest:
X-rays

Results
Perspectives


Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube


PIV in a 4mm diameter tube

Sedimentation of
particles
in drilling fluids

- ▶ Field of view 6.5mm
- ▶ $Q=2 \text{ mL/min}$
- ▶ $\text{Re} \sim 1$ for water

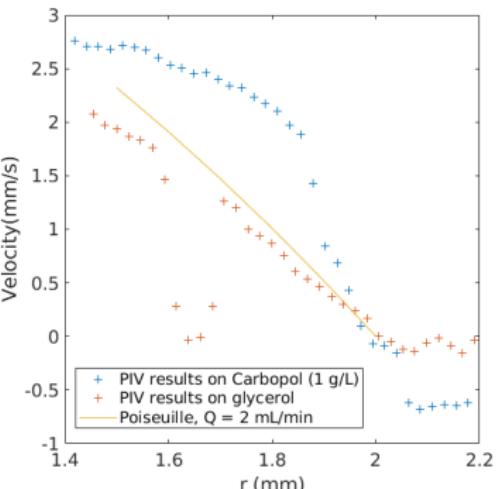
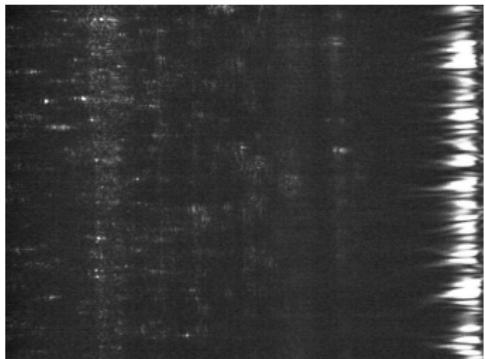
- ▶ Field of view 6.5mm
- ▶ Results, $Q=10 \text{ mL/min}$
- ▶ $\text{Re} \sim 0.1$ for glycerol

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV



Objectives
Methods
Materials
Calibration: PIV in tube

PIV in a 4mm diameter tube

Sedimentation of
particles
in drilling fluids

Blandine FENEUIL
Andreas CARLSON
Atle JENSEN

- ▶ Field of view 1mm
- ▶ $Q = 2 \text{ mL/min}$
- ▶ $\text{Re} \sim 0.01$ for glycerol

Fluid at rest:
X-rays

Results
Perspectives

Under shear: PIV

Objectives
Methods
Materials
Calibration: PIV in tube

Thank you for your attention

Any questions / comments ?