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Resolved and Non-resolved Approaches

Resolved approach

Particle diameters dp are greater
than the cell length∆x

Particles are simulated by di�erent
approaches that recover the shape

Non resolved approach

Particle diameters dp are smaller
than the cell length∆x

Particles are modelled by adding
forces
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Governing Equations

Forced lattice Boltzmann equation

fi(x + c i∆t, t +∆t) = fi(x , t) +Ωi(x , t) +∆t Fi(x , t)

Newton’s law of motion

ms
dus

d t
= ms

d2x s

d t2
= F(x , t)
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Coupling Approaches

Volume fraction of solid phase:
Dilute: Low volume fraction, Impact of particles on the fluid flow can be neglected
Dense: High volume fraction, the fluid flow is a�ected by the presence of the
particle

One-way-coupling
Hydrodynamic forces acting on particles

Two-way-coupling
+ Particles forces acting on the fluid

Four-way-coupling
+ Particle-particle interaction (collision model)
+ Particle wall interaction
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Resolved Approach

Solid volume fraction ε(x , t)

ε(x , t) =
Vs(x , t)

Vtotal(x , t)
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Volume Approximation Techniques

Estimation of the solid volume fraction ε(x , t) is di�icult

Compromise of computing time and accuracy

Establishedmethods:
Exact closed form solution
Polyhedral approximation
Smoothed profile method
Supersampling
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Smoothed profile method

ε(x , t) =











0 ||x − x B(t)||2 − rB + ε/2≥ ε
sin2

�

π(||x−x B(t)||2−rB+ε/2)
2ε

�

||x − x B(t)||2 − rB + ε/2 ∈ (0,ε)

1 ||x − x B(t)||2 − rB + ε/2≤ 0
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Supersampling
Every cell, where ε(x , t) ∈ (0,1), is divided in a subgrid
Subgrid is constructed with a certain refinement level r
Binary information of the subgrid is used to estimate ε(x , t)

ε(x , t) =
r3
∑

i=1

V subgrid
s,i (x , t)

V subgrid
s,i (x , t) =

¨

0 f alse
1
r3 t rue
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Supersampling vs. Smoothed Profile
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PSM – Algorithm

Collide and stream

fi(x + c i∆t, t +∆t) = fi(x , t) + BΩs
i(x , t) + (1− B)Ω f

i (x , t)

Weighting factor B(x , t)

B(x , t) =
ε(x , t)

�

τ
∆t −

1
2

�

(1− ε(x , t)) +
�

τ
∆t −

1
2

�

Solid collision operatorΩs
i(x , t)

Ωs
i(x , t) =

�

f ī(x , t)− f eq
ī
(ρ, us)

�

−
�

fi(x , t)− f eqi (ρ, us)
�

Fluid collision operatorΩ f
i (x , t)

Ωs
i(x , t) =

∆t
τ

�

f eqi (ρ f ,U)− fi(x , t)
�
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PSM – Force and Torque

Total hydrodynamic force F(t)

F(t) =
(∆x)3

∆t

∑

x s

�

B(x s, t)
∑

i

�

Ωs
i(x s, t)c ī

�

�

Boundary torque T(t)

T(t) =
(∆x)3

∆t

∑

x s

�

B(x s, t)(x s −R)×
∑

i

�

Ωs
i(x s, t)c ī

�

�
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HLBM – Algorithm

Collide and stream

fi(x + c i∆t, t +∆t) = fi(x , t) +Ω f
i (x , t)

Weighting factor B(x , t)
B(x , t) = ε(x , t)

Fluid collision operatorΩ f
i (x , t)

Ω
f
i (x , t) =

∆t
τ

�

f eqi (ρ f , ū)− fi(x , t)
�

Equilibrium velocity ū

ū = U + B(x , t)(us −U)
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HLBM – Force and Torque

Momentum Exchange gi(x , t)

gi(x , t) = c i fi(x , t) + c ī fi(x + c ī∆t, t)

Total hydrodynamic force F(t)

F(t) =
(∆x)3

∆t

∑

x s

�

B(x s, t)
∑

i

gi(x , t)

�

Boundary torque T(t)

T(t) =
(∆x)3

∆t

∑

x s

�

B(x s, t)(x s −R)×
∑

i

gi(x , t)

�
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Schäfer Turek – Flow around a Cylinder

Drag and li� coe�icients

cD =
2Fw

ρū2DH
, cL =

2Fa

ρū2DH
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Schäfer Turek – Flow around a Cylinder

CD N = 10 N = 20 N = 40

HLBM ε= 2 9.83 7.57 6.81
HLBM ε= 1 8.15 6.90 6.51
HLBM ε= 0 6.90 6.38 6.22

PSM 6.47 6.30 6.24
Bouzidi 6.35 6.22 6.19

Schäfer et al. 6.05-6.25
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Schäfer Turek – Flow around a Cylinder

CL(×10−2) N = 10 N = 20 N = 40

HLBM ε= 2 0.00 1.04 1.11
HLBM ε= 1 0.00 0.66 0.87
HLBM ε= 0 0.00 0.53 0.73

PSM 0.47 0.77 0.84
Bouzidi 13.20 2.50 1.25

Schäfer et al. 0.80-1.00
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Conclusion and Outlook

Lattice Boltzmann provides resolved and non resolved approaches to simulate
suspensions

E�icient and accurate volume fraction approximation techniques are
challenging

Various resolved approaches o�ers a wide range of applications
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Thank you for your attention!
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