

PIRE ARM 2018: Turbulent Thermal Lattice Boltzmann Methods

June 19th 2018

Maximilian Gaedtke, Simon Wachter, Mathias J. Krause

INSTITUTE FOR MECHANICAL PROCESS ENGINEERING AND MECHANICS (MVM)

- Mathematical Model
- Thermal Lattice Boltzmann Method
- Validation
 - Validation Against Literature
- Summary

Thermal Flows – Mathematical Model

- Navier-Stokes equation for velocity and pressure distribution

$$\nabla \cdot u = 0$$

$$\frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\frac{1}{\rho} \nabla p + \nu \Delta u + F$$

- Advection-diffusion equation for temperature distribution

$$\frac{\partial T}{\partial t} = -u \cdot \nabla T + \alpha \Delta T$$

- Coupling via Boussinesq approximation

- Only the fluid density is a function of the temperature

$$\rho(T) \approx \rho_0(1 - \beta(T - T_0))$$

- Buoyancy force G :

$$G = \rho_0 \beta(T - T_0) g$$

Outline

- Mathematical Model
- Thermal Lattice Boltzmann Method
- Validation
 - Validation Against Literature
- Summary

LBM for Velocity and Pressure

- Particle distribution function f_i :

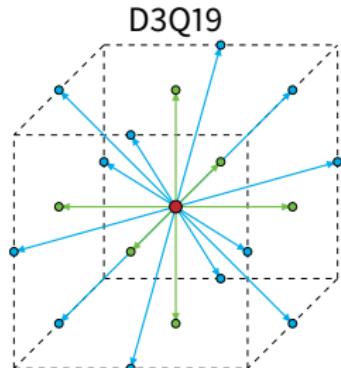
$$f_i(x + c_i \Delta t, t + \Delta t) = f_i(x, t) - \frac{\Delta t}{\tau} (f_i(x, t) - f_i^{eq}(x, t)) + F_i$$

- With equilibrium distribution function f_i^{eq} :

$$f_i^{eq} = \omega_i \rho \left(1 + \frac{u \cdot c_i}{c_s^2} + \frac{(u \cdot c_i)^2}{2c_s^4} - \frac{u \cdot u}{2c_s^2} \right)$$

- For small velocities u , so that $Ma = \frac{|u|}{c_s} \ll 1$
- With relaxation time $\tau = \frac{1}{c_s^2} (\nu + \frac{1}{2} \Delta t)$
- Density ρ and velocity u :

$$\rho(x, t) = \sum_i f_i(x, t) \quad u(x, t) = \frac{1}{\rho} \sum_i c_i f_i(x, t)$$



LBM for Temperature

- 2nd particle distribution function g_i :

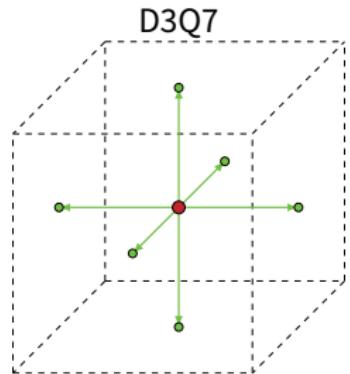
$$g_i(x + c_i \Delta t, t + \Delta t) - g_i(x, t) = -\frac{\Delta t}{\tau'} (g_i(x, t) - g_i^{eq}(x, t))$$

- With equilibrium particle distribution g_i^{eq} :

$$g_i^{eq} = \omega_i T \left(1 + \frac{c_i \cdot u}{c_s^2} \right)$$

- With relaxation time $\tau' = \frac{1}{c_s^2} (\alpha + \frac{1}{2} \Delta t)$
- Temperature T :

$$T = \sum_i g_i$$



Thermal Large Eddy Simulation (LES)

- Effective viscosity as a sum: molecular viscosity + turbulent viscosity

$$\nu_{\text{eff}} = \nu_0 + \nu_t = \nu_0 + (C_S \Delta)^2 \sqrt{2 \sum_{\alpha, \beta} S_{\alpha \beta} S_{\alpha \beta}} \quad (1)$$

- in LBM: strain rate $S_{\alpha \beta}$ is calculated locally from the cell's non-equilibrium

$$S_{\alpha \beta} = -\frac{1}{2\rho \tau_{\text{eff}} c_s^2} \Pi_{\alpha, \beta}^{(neq)} = -\frac{1}{2\rho \tau_{\text{eff}} c_s^2} \sum_q e_{i, \alpha} e_{i, \beta} (f_i - f_i^{(eq)}) \quad (2)$$

- Equivalent calculation for the effective temperature conductivity

$$\alpha_{\text{eff}} = \alpha_0 + \alpha_t = \alpha_0 + \frac{\nu_t}{Pr_t} \quad (3)$$

- With constant turbulent Prandtl number

$$Pr_t = \frac{\nu_t}{\alpha_t} = 0.86 \quad (4)$$

Double Distribution Function Algorithm

- 1st particle distribution function f_i
 - Collision step
 - Streaming step
- 2-way coupling via buoyancy force with Boussinesq approximation
 - Communicate the updated velocities from f_i to g_i
 - Update the force term of f_i with new temperatures from g_i
 - Calculate ν_{eff} , α_{eff} and corresponding τ and τ'
- 2nd particle distribution function g_i
 - Collision step
 - Streaming step
- Next time step

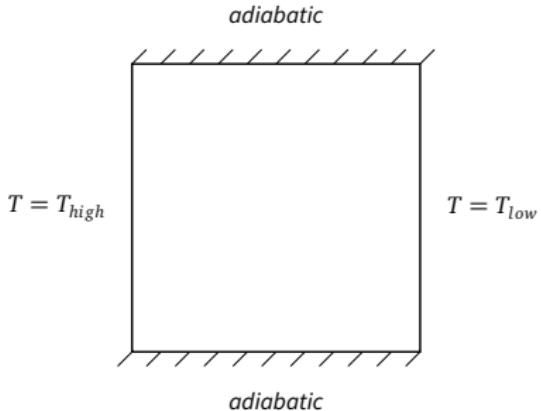
Outline

- Mathematical Model
- Thermal Lattice Boltzmann Method
- Validation
 - Validation Against Literature
- Summary

Natural Convection in a Square Cavity

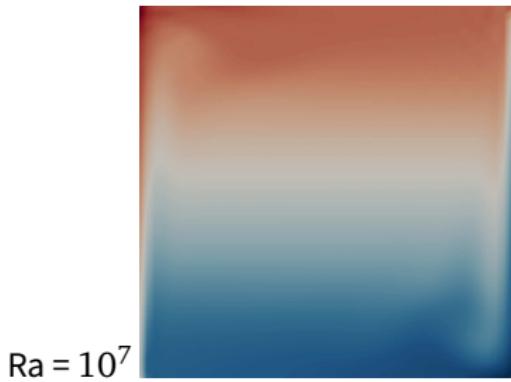
Benchmark according to Davis (1983):

- $u_x = u_y = 0$ on all walls
- $T = T_{high}$ left, $T = T_{low}$ right
- Adiabatic on top and bottom
- $Pr = 0.71$ (air)
- $Ra = \frac{g\beta}{\nu a} (T_{high} - T_{low}) L^3$
 $= 10^7; 10^8; 10^9; 10^{10}$

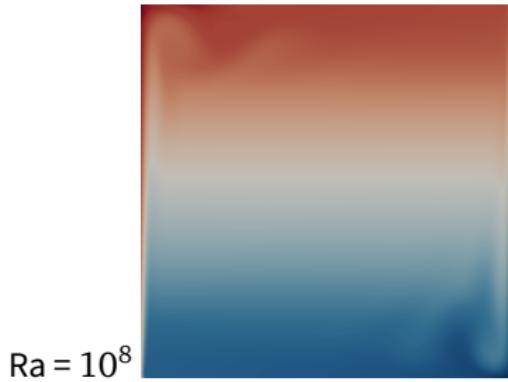


- Comparison:
 - $\max(u_x)$ and its position
 - $\max(u_y)$ and its position
 - Nu_0 at the left wall
 - Streamlines and temperature contours

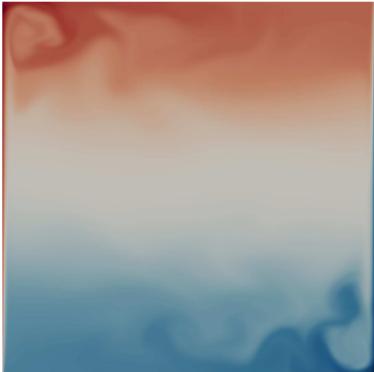
Thermal Cavity – Temperature Distribution



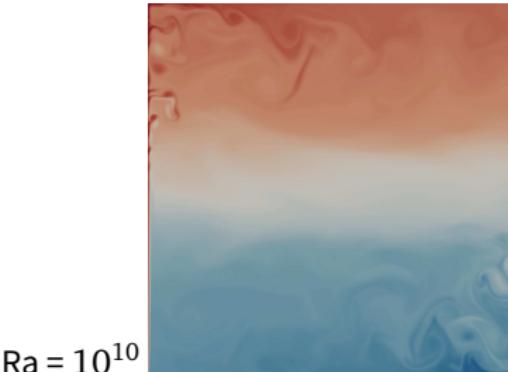
$Ra = 10^7$



$Ra = 10^8$

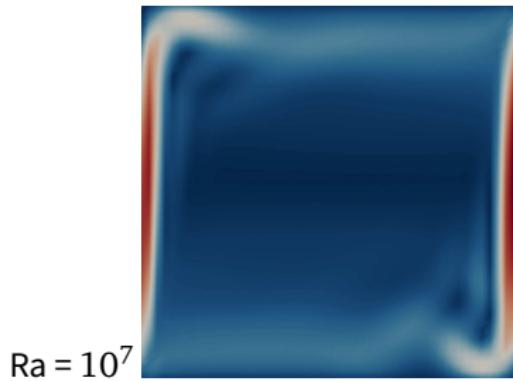


$Ra = 10^9$

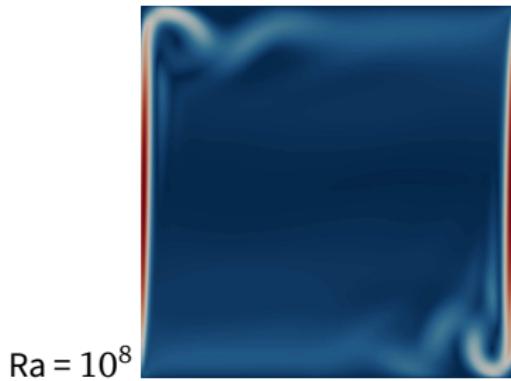


$Ra = 10^{10}$

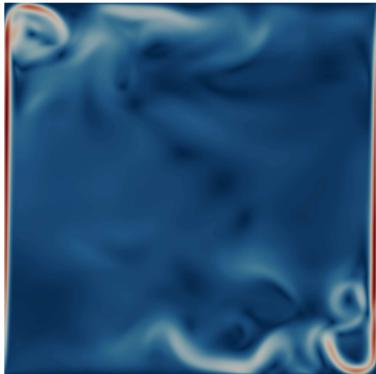
Thermal Cavity – Velocity Distribution



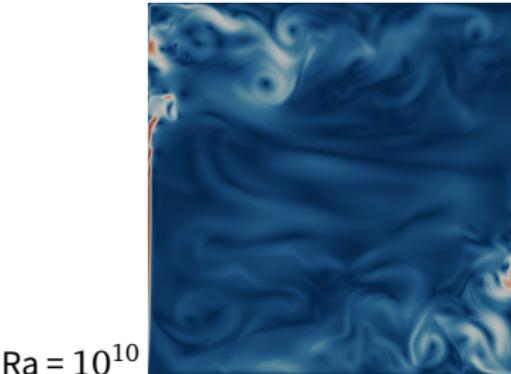
$Ra = 10^7$



$Ra = 10^8$



$Ra = 10^9$



$Ra = 10^{10}$

Thermal Cavity – Literature Comparison

$$y^+ = \frac{\Delta x u_\tau}{\nu} = 2$$

Ra		10^7	10^8	10^9	10^{10}
Grid used		(47x47x3)	(139x139x3)	(392x392x3)	(1138x1138x3)
y_{max}	Dixit (2006)	0.851	0.937	0.966	0.9402
	Present	0.905	0.945	0.950	0.907
$u_{x,max}$	Dixit (2006)	164.236	389.877	503.24	2323
	Present	130.221	280.674	2277.140	2967.5
x_{max}	Dixit (2006)	0.020	0.0112	0.0064	0.4907
	Present	0.042	0.014	0.008	0.004
$u_{y,max}$	Dixit (2006)	701.922	2241.374	6820.07	21463
	Present	467.976	1860.270	6124.420	20533
\overline{Nu}_0	Dixit (2006)	16.79	30.506	57.350	103.663
	Present	16.987	32.076	52.260	102.034

Outline

- Mathematical Model
- Thermal Lattice Boltzmann Method
- Validation
 - Validation Against Literature
- Summary

Summary:

- 3D Lattice Boltzmann method (LBM) for thermal flows
- Addition for turbulent flows with Smagorinsky-LES-Model
- Good agreement with turbulent benchmark

Outlook:

- Resolved phase change simulation through coupling the heat equation with suspension modeling