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Preparation of Emulsion

Octadecane mass (g)

Water mass (g)

Span 60 mass (g)

Tween 60 mass (g)

Volume Fraction of Oil

Weight Percentage of Qil
Weight Percentage of Water
Weight Percentage of Span 60
Weight Percentage of Tween 60
Weight Percentage of Surfactants
Volume of Water (mL)

Volume of Octadecane (mL)
Total Volume (mL)
Surfactant/Oil Mass Ratio
Surfactant/Oil Volume Ratio
Oil/Surfactant Mass Ratio

Solution 1

120

340

4

10.4
0.303158528
25.29510961
71.66947723
0.84317032
2.192242833
3.035413153
341.0230692
154.4401544
509.4369456
0.12
0.09047985
8.333333333

Solution 2

120

320

7

18.2
0.308968639
25.79535684
68.78761823
1.504729149
3.912295787
5.417024936
320.9628887
154.4401544
499.8570565
0.21
0.158339737
4.761904762

Solution 3

120

320

10

26
0.302623657
25.21008403
67.22689076
2.100840336
5.462184874
7.56302521
320.9628887
154.4401544
510.3373479
0.3
0.226199624
3.333333333

Solution 4

120

300

13.5

35.1
0.307341038
25.60819462
64.02048656
2.880921895
7.490396927
10.37131882
300.9027081
154.4401544
502.5041741
0.405
0.305369492
2.469135802
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Solution 4

Vol. Fraction

TOTAL Vol X2

TOTAL Vol X2

TOTAL Vol X2

TOTAL Vol X2

0.303158528

0.303158528

0.303158528

0.303158528

0.303158528

0.308968639

0.308968639

0.308968639

0.308968639

0.308968639

254

0.302623657

0.302623657

0.302623657

0.302623657

0.302623657

0.307341038

0.307341038

0.307341038

0.307341038

0.307341038

254

Vol. of Oil (mL)

15.15792639

10.00423142

7.578963196

4.547377917

2.425268223

15.44843195

9.26905917

7.415247336

4.634529585

2.471749112

15.13118284

9.986580675

7.56559142

4.539354852

2.420989254

15.3670519

9.220231139

7.376184911

4.610115569

2.458728304

Surfactant/Oil Mass Ratio

0.12

0.12

0.12

0.12

0.21

0.21

0.21

0.21

0.3

0.3

0.3

0.3

0.3

0.405

0.405

0.405

0.405

0.405

Surfactant/Oil Volume Ratio

0.09047985

0.09047985

0.09047985

0.09047985

0.09047985

0.158339737

0.158339737

0.158339737

0.158339737

0.158339737

0.226199624

0.226199624

0.226199624

0.226199624

0.226199624

0.305369492

0.305369492

0.305369492

0.305369492

0.305369492

Vol. of Surfactants

1.371486899

0.905181353

0.685743449

0.41144607

0.219437904

2.446100647

1.467660388

1.17412831

0.733830194

0.391376103

3.422667866

2.258960791

1.711333933

1.02680036

0.547626859

4.692628833

2.8155773

2.25246184

1.40778865

0.750820613

Vol. of Water

33.47058671

22.09058723

16.73529336

10.04117601

5.355293874

32.1054674

19.26328044)

15.41062435

9.631640221

5.136874785

31.44614929

20.75445853

15.72307465

9.433844788

5.031383887

29.94031927

17.96419156

14.37135325

8.982095781

4.790451083

New Vol. of Water

33.47058671

37.09058723

41.73529336

40.04117601

45.35529387

31.8826441

34.26328044,

40.41062435

39.63164022

45.13687478

31.44614929

36.75445853

40.72307465

39.43384479

45.03138389

29.94031927,

32.96419156

39.37135325

38.98209578

44.79045108

New Total Volume

50

48

50

45

48

45

49

45

48

50

49

50

45

48

50

45

49

45

48



Preparation of Emulsion

Bl Water phase (w)
[ Oil phase (0)

/ - Water
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Preparation of Emulsion (Phase
Inversion Method)
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Unstable Emulsions

30% Vol. Fraction 20% Vol. Fraction 15% Vol. Fraction 10% Vol. Fraction 5% Vol. Fraction




Solutions containing ~7.5% Weight of
Surfactants at 23 degC

10% Vol. Fraction




Viscosity (Pa.s)

Rheological Properties

Flow Ramp at 25 degC
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Shear Stress

30% Vol. Fraction
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Viscosity (Pa.s)

2.10E-03

2.00E-03

1.90E-03

1.80E-03

1.70E-03

1.60E-03

10% Volume Fraction

22,5

23.5

24.5

25.5 26.5 27.5
Temperature (°C)

28.5

29.5

Viscosity (Pa.s)

30.

0.11

0.1

0.09

0.08

0.07

0.06

0.05

@ Cooling
M Heating
5 30 % Vol. Fraction
{1 @
¢
22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5

Temperature (°C)

30.5

# Heating

M Cooling



Design Loop

Q0O

Resemnvolr

YValve

Drass

/@ 5 Surface

“thermocoaples,

Flonmeter \

. -..\ T . o
Valve | @2 Bulk Nuid
".“ll'l”l ‘-|||||.-~.‘ '

Bypass Line

Pump

|

DAQ
shvstem

E T 1

Vahe copper cal

Immersioa Bath

I est Section

Power Supply

Q= h*A*(Tsurface'Tquid)

Fre

if¥erearia

sure ramadpee

12



Design Loop
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Beeswax results: effect of
flow rate
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Viscosity jumps from ~20 cP to ~70 cP after the phase change

— Volumetric flow basis: h < hy0

beeswax
— Heat transfer coefficient doesn’t vary much below and above the
melting point for beeswax

— Heat Transfer coefficient was noticeably higher close to the phase
change temp. 1,068 W/m?K (61.8°C) vs 753 W/m?K (70°C)
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7000 - Bl \Vater, 30°C
6500 1 [ Beeswax, 30°C

6000 Water, 70°C
5500 A Beeswax, 70°C
5000
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0
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Transitional temperature results

Thermal non-equilibrium effects and
unusual instabilities (large amplitude

oscillations in the flow rate and heated

tube surface temperatures) have been
observed at the phase change
temperature.

A radial temperature gradient exist

causing non-uniform melting of the PCM

particles. The solid particle surface
would be partially covered with the
liquid PCM and water/surfactant
solution, and a three-phase contact lin
would form on the particle surface,
affecting the particle- to-particle
interactions and particle behavior.

Janus Effect?
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Figure 3: Particle size distribution (right) and viscosity (left) of the emulsion with 30 wt.% (black), 35 wt.% (red) and 40 wt.% (blue) octadecan
and 7 wt.% emubsifier in dependence of thermo-mechanical cyeles (5 °C - 35 °C; 100 1-s5™)

German collaborators, Niedermaier et al., [6] noticed large differences
in viscosity above and below the melting point, increasing with the
number of thermal cycles.

As the PCE is heated and cooled repeatedly, a shear-thickening
behavior was also observed, but the physical reasons for these results
are unclear.

In our previous work, the water evaporated causing an increase in
viscosity.
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Further interests

//// £ | .

Particle migration from regions of high to low shear rate

[5] Morris et al.
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Farticle Fraction

Pe= 5 and Vol. Fraction of 0.05 Kang et al [4]
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Rheo-NMR spectroscopy

e Variable-temperature Rheo-NMR will be
performed (Scheler, IPF Dresden) to better
understand and control how shear flow affects

molecular-level properties and bu
Resolution might be a prob
* Magnetic resonance imaging (MR

k rheology.
em

) velocimetry

experiments under shear flow is expected to
reveal quantitative information on how the
melting process affects the local velocity profile,
vielding valuable insights into the hydrodynamic

instabilities.



