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Hydrates

* Areas of impact
— Petroleum pipelines: flow assurance
— Presence 1n permafrost, seabed:
— harvesting for energy
— concern over release & greenhouse effect
— Transport operations
— Energy transportation (stable solid for H2 or CH4)
— Use 1n refrigeration systems
— (Gas separations
— Water purification



Hydrates
history at CCNY

® Jeff Morris / Jae Lee (now at KAIST, South Korea)
Flow assurance — rheological analysis
(Chevron and BP-GOMRI)

® Jac Lee
Ship transport of gaseous fuels in hydrate form

® Marco Castaldi (non-PIRE activities)
Subsurface (permafrost) experimental model
CO» hydrate displacement of methane hydrate



Hydrates in pipelines

Subsea transport
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100’s of miles

Atlantis oil platform - Gulf Mexico

v Hydrate formation in oil / gas flow lines
Most critical flow assurance 1ssue

Rapid formation rate




Hydrate structure and thermodynamics

Hydrate formation
zone

Pressure —

Hydrate free
zone

9]
=
00
o
3
°0
S
£
X
c
2
&
19
a

Temperature —

e Solid crystalline compounds
e Entrapped guest molecules, e.g. methane, ethane, CO2, H»
e Stable at low T (<20°C) and high P (> 30 bar)

e (Cyclopentane (CP): hydrate former at atmospheric pressure
Tqiss = 7°C — reduced for CP mixed with other oil (CP activity controls



Shear rheology
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Hydrate seeding at t= 0, T = -2°C
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Transition stochastic without seeding

Peixinho et al. Langmuir 2010,
Karanjkar, Abuja et al. Rheol. Acta 2016
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Final Viscosity

Zylyftari, Lee & Morris Chem Eng Sci 2013
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» Final viscosity attains a peak at 80% conversion when temperature is varied.
« Similar for yield stress.
» Consistent with mechanism described by Colorado School of Mines researchers.

Maximum viscosity is observed at 60-80% water to hydrate conversion (salt controlled).




Interfacial morphology

A water drop in cyclopentane (No surfactant) : 0.2°C

water drop hydrate ball enlarged view

“Nucleation - Surface growth”

Very slow radial growth - diffusion of cyclopentane through hydrate shell



Interfacial morphology

w/ surface-active agents in oil

A water drop in cyclopentane + 0.1% Span 80 : 0.2°C

“dendritic” crystals — induces porosity

hydrate ball enlarged view

“Nucleation - Surface growth - Radial growth”

Karanjkar et al., Proceedings 7th International Conference on Gas Hydrates (ICGH), Scotland, UK July 2011



t = 0 for all cases

Span 80 (vol%)

a) 0.0001%
46 mN/m
b) 0.001%;
27mN/m
c) 0.01%;
10 mN/m
d) 0.1%;
~1 mN/m

scale bar = Imm




Summary &
what’s up next

e Hydrate formation in emulsions:
Interfacial phenomenon - water drop/oil interface

Interfacial properties govern:
— wetting in water / oil / hydrate system (Fanny Thomas)
— hydrate crystal morphology

e Hydrates research:
—SINTEF (Norway): Harald Linga (for Martin Fossen)
—French ANR proposal: Didier Dalmazzone (ENSTA ParisTech)
—IRSTEA hydrates research:
Anthony Delahaye (overview)
Laurence Fournaison (secondary refrigeration)



