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A 10 year journey in the asphaltenes field

* The story started (for me) in Trondheim in 2019 within the
FACE project (IFE-SINTEF-NTNU).

* Collaboration was developed with CCNY, ENSIACET and IMFT to
restart asphaltenes studies “from scratch”.

* The endeavor goes on within the PIRE project with somewhat
the same partners.



Expansion of asphaltenes covered droplets
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* Laplacian shapes
» After renormalization all curves collapse

-> no gelling but an Equation of State



Asphaltenes Equation of state

* Good fit with a Langmuir EOS
G)=g, +KTG,In(1-G
9(G) =g +KTGy In(1- O )

* Surface excess coverage

=1/molecular area

[_=3.3 molecule/nm?
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Significance of surface excess coverage

Molec. area=0.3nm?2 ~carbon skeleton of 6 fused aromatic
rings (~average asphaltenes)

—Flat on adsorption of polyaromatic core?
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Coherent with SFG spectroscopy: asphaltenes with aromatic
core flat on water and alkyl chains perpendicular



Confirmation of equation o

30
Dilatational rheology with a poor and

viscous solvent at high frequency 25

N
o

=0y  KTD
" 8inr (1-T/T,)

E'~E

Elastic modulus (mN/m)
> o

—> expected unique relationship
between elastic modulus and surface
pressure dependent upon core size 0

@ SYNTHETIC ASPHALTENES

| w1 [ angmuir EOS : 6 PAH [T
=1 ® | angmuir EOS : 4 PAH
= 1 | angmuir EOS : 12.6 PAH :
................................... R R .
20 25 30 35 40

IFT (mN/m)




Quantum Based molecular dynamic simulations (DFTB)
With Aude Simon U. of Toulouse (France)
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Extension of MD simulations to water benzene interface.

perpendicular -> desorption parallel -> stable



How to use the gained knowledge to explain?

* ”Rigid skin”?

* Shear elasticity? L Phase transition due to packing

* Emulsion stability?
* Adsorption/relaxation kinetics? Mixture effects



Large amplitude area cycling around 20
mN/m surface pressure (¥80% coverage)
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Expansion: droplet remains Laplacian and IFT follows EOS
Contraction: droplet becomes non Laplacian and IFT flattens
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An d Iternate mOdEI Dynamic frustration

-> shear elasticity
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Stirred tanks experiments with aliphatic oil

(a) Vigorous emulsification.
(b) Reduced agitation.
—>Rapid increase in size
Followed by blockage for hours

? asphaltenes accumulation at interface
—> jamming = impossibility to open
up asphaltenes free contact area?
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d blockage (lvlm)

Arrested coalescence principle
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* Upon coalescence, area is reduced.

* Surface coverage increases up a critical
value blocking further coalescence

_6M, / p, r

dblock _

block
p

= Thioa=3-3 mg/m?
(Similar estimate from Pr Yarranton)

M,,~750 g/mol - T,,,..~85% coverage

Hexagonal 3 LG model predicts a fully solid
interface for 85% coverage



Stirred tanks experiments with good solvents

Vigorous emulsification.
Reduced agitation.
—>Rapid increase in size
Slow drift
Free water overnight

Slow desorption by
diffusion through the
boundary layer?



Model for short times

* Assumptions:
* droplets have coalesced.
* critical surface coverage has been reached.

* no desorption has occurred yet. F F
. . ~ block

* Mass conservation during coalescence: d — d
With d. the diameter and I', the coverage of droplets during emulsification. block

With d, . the diameter and I, the coverage of droplets at blockage of coalescence.

* [ is defined by adsorption equilibrium during emulsification:

~(e-¢)(1-a,) - _KeT,
Fi B di o ! 1+ KCi

W
Mass conservation during emulsification

Langmuir adsorption isotherm
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Long term IFT decay due to mixture effects?

(adsorption of minority components)
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Extraction of pseudo component properties from

IFT measurements

Input C, ki

|

Numerical simulation
using trapezoidal rule

4 )
Vnumerical(t) Weichted
Ward Tordai ) cighte

[ SSE .

- /
Optimization using quasi-
Newton method*
[ Vexperimental(t) }

* L-BFGS (Limited memory Broyden-Fletcher-Goldfarb-Shanno) algorithm

6/16/2019

Optimal C,, k;

End
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Validation against Freer and Radke’s data
(J. of Adhesion 80 (6), 481-496, 2004)
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Extracting pseudocomponents properties from dynamic IFT
enables prediction of dilatational rheology (seems to work
for crude oil as well) 18



Application to the stirred tank experiments with
good solvents
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Most predicted droplet sizes fall within 20% of

experiments
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Publication forecast for the asphaltenes thrust

*CCNY on the extraction of pseudo-components from IFT
and its use to predict rheology.

*CCNY on the use of Lattice gas model for asphaltenes.
*Joint SINTEF/CCNY on the prediction of droplet size in
stirred tank experiments.

*Joint CCNY/SINTEF/Toulouse on the the analysis of IFT
and rheology with crude oil?

Joint CCNY/U. Toulouse on DFTB?
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